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Nematic liquid crystals possess three different phases: isotropic, uniaxial, and biaxial. The ground state of
most nematics is either isotropic or uniaxial, depending on the external temperature. Nevertheless, biaxial
domains have been frequently identified, especially close to defects or external surfaces. In this paper we show
that any spatially varying director pattern may be a source of biaxiality. We prove that biaxiality arises
naturally whenever the symmetric tensor S= ��n���n�T possesses two distinct nonzero eigenvalues. The ei-
genvalue difference may be used as a measure of the expected biaxiality. Furthermore, the corresponding
eigenvectors indicate the directions in which the order tensor Q is induced to break the uniaxial symmetry
about the director n. We apply our general considerations to some examples. In particular we show that, when
we enforce homeotropic anchoring on a curved surface, the order tensor becomes biaxial along the principal
directions of the surface. The effect is triggered by the difference in surface principal curvatures.
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Nematic liquid crystals are aggregates of rodlike mol-
ecules. Early theories �1–3� used a single order parameter,
the director, a unit vector pointing along the average micro-
scopic molecular orientation. Most nematic phenomena fit
well within the classical description. However, the transition
from ordered to disordered states escapes the director theory.
The classical microscopic description of defects and surface
phenomena yields undesired results as well. The order-tensor
theory put forward by de Gennes �4,5� focuses on the orien-
tational probability distribution, and introduces the measures
of the degree of orientation and biaxiality. Within this theory,
a nematic liquid crystal possesses three different phases,
which can be identified through their optical properties, since
its Fresnel ellipsoid is closely related to the order tensor it-
self �6�. A isotropic liquid crystal is characterized by an iso-
tropic order tensor, and optically behaves as an ordinary
fluid. A uniaxial nematic possesses a unique optic axis. Its
order tensor has two coincident eigenvalues. Finally, in a
biaxial nematic the eigenvalues of the order tensor are all
different, and the Fresnel ellipsoid possesses two optic axes.

Within the Landau-de Gennes theory, the ground state
may be either isotropic or uniaxial, depending on the exter-
nal temperature. However, biaxial domains have been pre-
dicted and observed, especially close to defects and external
boundaries. Schopohl and Sluckin �7� analyzed in detail the
biaxial core of a + 1

2 nematic disclination. More recent studies
show that a biaxial cloud surrounds most nematic defects �8�,
and both analytic �9,10� and numeric �11,12� asymptotical
descriptions of biaxial defect cores have been derived. Other
examples of defect-induced biaxiality involve integer-
charged disclinations �13–15� and cylindrical inclusions �16�.
The onset of surface biaxiality is closely related to the pres-
ence of a symmetry-breaking special direction, which coin-
cides with the surface normal �17�. Indeed, biaxiality has
been predicted close to both external boundaries �18,19� and
internal isotropic-nematic interfaces �20,21�.

In this paper we show that biaxiality effects are closely

related to, but not exclusively confined to, the examples
above. In fact, within any spatially varying director distribu-
tion, the director gradient itself breaks uniaxial symmetry
about the director. We analyze in detail the structure of the
elastic free energy density and come up to the result that,
given the director distribution, it is possible to predict the
onset of biaxiality, to determine the direction of the second-
ary optic axis, and to estimate the intensity of biaxiality ef-
fects. We then apply our general considerations to some spe-
cific examples, both within the bulk and close to an external
boundary. We remark that we are not dealing with intrinsi-
cally biaxial nematic liquid crystals, that is systems in which
the ground state itself becomes biaxial. Such systems, first
observed by Yu and Saupe �22�, deserve a different treatment
�23,24�, since in them uniaxial symmetry is broken already at
a molecular level.

This paper is organized as follows. In Secs. I and II we
quickly review the order-tensor theory and the free energy
density we aim at minimizing. In Sec. III we derive and
describe our main result, predicting a possible onset of biaxi-
ality whenever the director is not uniform. In the following
Secs. IV and V we apply the preceding results to some spe-
cific examples. In Sec. VI we collect and discuss our main
results, while in the Appendices we collect the technical de-
tails of the proofs.

I. ORDER TENSOR

The orientation of a single nematic molecule may be rep-
resented by a unit vector n�S2, where S2 is the unit sphere.
Microscopic disorder is taken into account by introducing a
probability measure fx :S2→R+, such that fx�m� describes
the probability that a molecule placed in x is oriented along
m. The probability measure fx is even, since opposite orien-
tations are physically equivalent.

Nematic optics is determined by the variance tensor
M= �m � m�, where the tensor product is defined in �A8� and
the brackets denote averaging with respect to fx. By defini-
tion, M is symmetric and semidefinite positive. Since, in
addition, the trace of M is equal to 1, we define the traceless*Electronic address: paolo.biscari@polimi.it
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order tensor Q=M− 1
3I, where I is the identity.

We label the nematic as isotropic when all the eigenvalues
of Q coincide, which implies Qiso=0. When at least two
eigenvalues are equal, the nematic is called uniaxial. Simple
algebraic manipulations allow one to write

Quni = s�n � n −
1

3
I� . �1�

The scalar parameter s is the degree of orientation �25�,
while the unit vector n is the director. The eigenvalues of
Quni are 2

3s �associated with n� and − 1
3s �with a multiplicity

of 2�. The director is then the eigenvector associated with the
different eigenvalue. Equivalently, n could be also identified
as the eigenvector associated with the eigenvalue whose sign
is different from the other two.

When the eigenvalues of the order tensor are all different,
the nematic is labeled as biaxial. In this general case, we can
use the above remark, and still identify the director as the
eigenvector of Q whose eigenvalue has a different sign with
respect to the other two. This definition may induce an arti-
ficial director discontinuity whenever the intermediate eigen-
value crosses 0. In turn, it yields an operative definition that
works well when the order tensor is possibly biaxial, but
however, close to being uniaxial. Once we have introduced
the director, we again define the degree of orientation
s= 3

2�n, where �n is the eigenvalue associated with n. The
other two eigenvalues �± can be finally written in terms of
the degree of biaxiality �: �±=− 1

3s±�. As a result we obtain

Qbia = s�n � n −
1

3
I� + ��e+ � e+ − e− � e−� . �2�

The sign of � is unessential, since it only involves an ex-
change between e+ and e−. The degree of biaxiality does
always satisfy 	�	� 1

3 	s	. Indeed, when 	�	= 1
3 	s	 one of the

eigenvalues vanishes, and greater biaxiality values would in
fact announce an abrupt change in the director �and in the
degree of orientation as well�.

II. FREE ENERGY FUNCTIONAL

Equilibrium states of nematic liquid crystals are identified
as extremals of the free-energy functional whose density, in
the absence of external fields, comprises two terms

��Q,�Q� = �el�Q,�Q� + �LdG�Q� . �3�

Though all of the calculations we report could be repeated
in a more general framework, we will adopt the one-constant
approximation for the elastic contribution �el,

�el�Q,�Q� =
K

2
	�Q	2, �4�

where K is an average elastic constant.
The Landau-de Gennes potential �LdG is a temperature-

dependent thermodynamic contribution that takes into ac-
count the material tendency to spontaneously arrange in or-
dered or disordered states:

�LdG�Q� = AtrQ2 − BtrQ3 + CtrQ4. �5�

The material parameter C must be positive to keep the free-
energy functional bounded from below. The potential �5� de-
pends only on the eigenvalues of Q, and penalizes biaxial
states �26�. Insertion of �2� into �5� returns

�LdG�s,�� =
2

9
�Cs4 − Bs3 + 3As2� +

2

9
�6Cs2 + 9Bs + 9A��2

+ 2C�4. �6�

Let �=3A / �Cs0
2�. The absolute minimum of �LdG is located

at the uniaxial configuration �s0�0,�=0�, provided

� � �− 2,1� and B = 2
3Cs0�� + 2� . �7�

When looking for minimizers of the free energy func-
tional, we take into account that the Landau-de Gennes con-
tribution usually dominates the elastic one. This approxima-
tion holds as long as we do not get too close to a nematic
defect. Indeed, experimental observations confirm that nei-
ther s nor � depart easily from their preferred values �s0 ,0�.

We then envisage a two-step minimization. In the first
step �s ,�� are constrained to their optimal values. Minimiza-
tion proceeds exactly as in Frank’s director theory and yields
an optimal distribution n�r�. In the second step, we fix the
director distribution and determine the perturbative correc-
tions it induces in the optimal values of the scalar order
parameters. As a result, we prove that nonuniform director
configurations may induce a nonzero degree of biaxiality,
and a reduction in the degree of orientation. As a by-product
we determine how a nonzero director gradient breaks the
local axial symmetry induced by the director, and which di-
rection is chosen by most molecules �among those orthogo-
nal to n�.

III. BULK BIAXIALITY

We collect in the present section our main result. In order
to ease the reader we defer most of the technical proofs to the
Appendices below. We assume that a specific director distri-
bution n�r� has been determined by minimizing Frank’s free-
energy functional, constrained by suitable boundary condi-
tions. The director distribution may also take into account the
effects of any possible external field.

In Appendix A we prove the following decomposition for
the director gradient:

�n = �2e2 � e2 + �3e3 � e3 + �curl n Ù n� � n

+ 1
2 �n · curl n�W�n� , �8�

where W�n� denotes the skew tensor associated with n �see
Appendix A�. Furthermore, 
�2 ,�3�, 
e2 ,e3� are, respectively,
the eigenvalues and eigenvectors of the symmetric part of
G=�n− ��n�n � n, the third eigenvector of sym G= 1

2 �G
+GT� being n, with null eigenvalue. We remark that

div n = tr � n = �2 + �3. �9�

Let S be the symmetric tensor S= ��n���n�T. By virtue of
�A1� the director n is an eigenvector of S �with null eigen-
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value�. In Appendix B we prove that the elastic free energy
density may be given the following form:

�el = K� 1
3 	�s	2 + 	��	2 + s2	�n	2 + �2�	�n	2 + 4	��e+�Te−	2�

− 2s��e+ · Se+ − e− · Se−�� . �10�

Let us analyze in detail the different terms appearing in �10�.
The first two terms are trivial, since they simply penalize
spatial variations of the scalar order parameters. They remind
that, even in the presence of spatially varying preferred val-
ues �sopt�r� ,�opt�r��, the equilibrium distribution may not
imitate the optimal values. The third term is proportional to
s2	�n	2. This term has been already extensively studied
�25,27�. Its net effect is a decrease in the degree of orienta-
tion in places where the director gradient is most rapidly
varying. In particular, it strongly pushes the system toward
the isotropic state s=0 when the director gradient diverges.
The second-last term is proportional to �2. Since it is posi-
tive definite, it simply enhances the character of �=0 as an
optimal biaxiality value. Thus, were it not for the final term
we will next consider, biaxiality would never arise naturally
in a nematic liquid crystal.

The last term in �10� is linear in �. It shifts the optimal
biaxiality value away from �=0. In order to minimize the
complete free energy density it is worth to maximize the
multiplying factor depending on S. This condition deter-
mines the directions 
e+ ,e−� in which the order tensor Q is
pushed to break uniaxial symmetry. Indeed, the term within
brackets is maximized when 
e+ ,e−� coincide with the two
eigenvectors of S that are orthogonal to n. If we denote by
�+ ,�− the correspondent eigenvalues, the linear term be-
comes simply proportional to ��+−�−�. We thus arrive
at the following result. Consider the symmetric tensor
S= ��n���n�T. It always possesses a null eigenvalue (with
eigenvector n�. Whenever its other two eigenvalues do not
coincide, biaxiality is naturally induced in the system, and
the optimal eigendirections of Q coincide with those of S.

If we take into account expression �8� for �n, we can give
the eigenvalue difference ��+−�−� the following expression
�see �A7��:

��+ − �−�2 = �c2
2 − c3

2 + �3
2 − �2

2�2 + 4�c2c3 + 1
2cn��3 − �2��2,

�11�

where curl n=cn+c2e2+c3e3, and �2 ,�3 are as in �8�. In the
following sections we will apply the above results to some
practical situations, in order to better interpret their implica-
tions.

IV. SPLAY, BEND, AND TWIST BIAXIALITY

A. Planar fields

We begin by considering a quite common case, that is a
situation in which the director is everywhere orthogonal to a
fixed direction ez. When this is the case we can write

n�r� = cos ��r�ex + sin ��r�ey , �12�

where the tilt angle � may depend on all three coordinates.
Easy manipulations allow to write �n=n� � ��, with
n�=− sin ��r�ex+ cos ��r�ey. Thus

S = �n� � ������ � n�� = 	��	2n� � n�. �13�

The tensor S is symmetric as expected. Its eigenframe is

n ,n� ,ez�, with eigenvalues 
0, 	��	2 ,0�. The relevant ei-
genvalue difference ��+−�−�= 	��	2 induces spontaneous bi-
axiality whenever the tilt angle is not uniform. This result
has a simple physical interpretation. Since the director does
never lift from the �ex ,ey� plane, nematic molecules are natu-
rally induced to avoid the direction ez. As a consequence, the
order tensor breaks the uniaxial symmetry. It decreases the
eigenvalue in the ez direction, and consequently increases the
planar eigenvalue associated with n�.

Among the many examples of nontrivial planar configu-
rations we next analyze three particularly significant ones.

1. Pure splay

The splay field is defined as n�r�=er, where er is the
radial unit vector in cylindrical coordinates. If we complete
an orthonormal basis by introducing the tangential and axial
unit vectors e� ,ez, standard calculations allow one to prove
that

�n =
1

r
e� � e� and S =

1

r2e� � e�. �14�

Thus, �+=r−2, �−=0, and the elastic free energy density is
given by

�el = K�1

3
	�s	2 + 	��	2 +

�s − ��2

r2 � . �15�

Biaxiality favors the tangential direction with respect to the
axial direction. The r−2 factor implies that biaxiality �and the
degree of orientation decrease as well� is expected to show
close to the symmetry axis. Figures 3 and 5 of Ref. �13�
exactly confirm this result.

2. Pure bend

We again consider the same cylindrical coordinate frame
above, and analyze the bend field n�r�=e�. We obtain

�n = −
1

r
er � e� and S =

1

r2er � er. �16�

Again, �+=r−2, �−=0, and the elastic free energy density
can be given exactly the same expression �15�. Biaxiality
now favors the radial direction, and again concentrates close
to the �disclination� symmetry axis.

3. Pure twist

In Cartesian coordinates the twist field is defined as
n�r�= cos kzex+ sin kzey. If we again introduce the unit vec-
tor n��r�=− sin kzex+ cos kzey, we obtain

�n = kn� � ez and S = k2n� � n�. �17�

We now have �+=k2, �−=0. Again, biaxiality favors n�, that
is, the �x ,y� plane, with respect to the transverse direction ez.
The elastic free energy density still coincides with �15�, with
only a k2 replacing the r−2 factor. However, this coincidence
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must not induce one to guess that �el does always depend on
s and � only through the combination �s−��, as we will
evidence below.

B. Third dimension escape

We now consider a nontrivial three-dimensional example:
the escape in the third dimension. This field was first deter-
mined by Cladis and Kléman �28� as an everywhere continu-
ous director field able to fulfill homeotropic boundary con-
ditions on a cylinder. Let n�r�= cos 	�r�er+ sin 	�r�ez be
the director field, and let n��r�=− sin 	�r�er+ cos 	�r�ez.
We obtain

�n =
cos 	

r
e� � e� + 	�n� � er and S =

cos2 	

r2 e� � e�

+ 	�2n� � n�. �18�

Expression �18� for S shows that, within the order tensor Q,
either n� or e� may be preferred, depending on whether 	�2

is greater or smaller than cos2 	 /r2. This result turns out to
be particularly challenging, if we consider that in Cladis-
Kléman’s escape in the third dimension the tilt angle 	 is
given by

	�r� =



2
− 2 arctan

r

R
. �19�

A simple calculation allows one to show that �19� implies
	�2= cos2 	 /r2. Thus, the third-dimension escape turns out
to be one of the few spatially varying director fields which
do not induce any biaxiality. The elastic free-energy density
in Cladis-Kléman’s third-dimension escape is given by

�el = K�1

3
	�s	2 + 	��	2 +

8R2s2

�r2 + R2�2 +
4�R4 + r4��2

r2�r2 + R2�2 � .

�20�

V. SURFACE BIAXIALITY

In this section we estimate the degree of biaxiality in-
duced by an external surface on which strong anchoring is
enforced. We consider separately the cases of homeotropic
and planar anchoring. Differential calculus formula that turn
out to be useful for both cases are collected in Appendix C.

A. Homeotropic anchoring

We first assume that the surface director is parallel to the
unit normal � to a given �smooth� surface �. We also assume
that the director keeps its normal direction, at least in a thin
surface slab. To be more precise, we parametrize bulk points
through a coordinate set �u ,v ,
� such that

P�u,v,
� = P��u,v� + 
��u,v� , �21�

where P� is the projection of P onto �, 
 is the distance of P
from the fixed surface, and � is the unit normal at P� �see
Fig. 1�. If � if smooth, the coordinate set is well defined in a
finite neighborhood of �. We assume that n(P�u ,v ,
�)

=n(P��u ,v�)=��u ,v�. Then, �n turns out to be closely re-
lated to the curvature tensor. It is symmetric and can be
written �see �C2��

�n = −
�1

1 − �1

e1 � e1 −

�2

1 − �2

e2 � e2, �22�

where 
�1 ,�2� and 
e1 ,e2� denote, respectively, the principal
curvatures and principal directions at P�. From them we ob-
tain curl n=0, G=�n, and

S =
�1

2

�1 − �1
�2e1 � e1 +
�2

2

�1 − �2
�2e2 � e2. �23�

Equation �23� shows that biaxiality arises naturally close to
an external surface where homeotropic anchoring is en-
forced. This effect is triggered by the difference between the
principal curvatures. More precisely, the tangent direction
preferred by the order tensor is the one along which the
surface curves more rapidly. Close to a symmetric saddle,
where �1=−�2, the denominator of �23� induces biaxiality
along the direction which is convex toward the side occupied
by the liquid crystal.

B. Planar anchoring

When planar anchoring is enforced on a curved surface, it
is natural to assume that the chosen direction coincides with
one of the principal directions along �. We then keep the
same notations as above, and assume n(P�u ,v ,
�)
=n(P��u ,v�)=e1�u ,v�. When this is the case, by �C2� we
obtain

�n =
�1

1 − �1

� � e1 Þ curl n = −

�1e2

1 − �1

,

G = 0 and S =
�1

2

�1 − �1
�2� � � . �24�

Thus, in the presence of planar anchoring, biaxiality arises
whenever the curvature along the prescribed direction is dif-
ferent from zero. When this is the case, the biaxiality direc-
tion coincides with the unit normal.

VI. DISCUSSION

We have shown that any spatially varying director distri-
bution may induce the onset in biaxial domains even in nem-

FIG. 1. Geometric setting for the surface parametrization intro-
duced in the text.
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atic liquid crystals whose ground state is strictly uniaxial. In
particular, in Sec. III we have stressed the crucial role played
by S= ��n���n�T. The tensor S, which is symmetric and
positive semidefinite by construction, possesses always a
null eigenvalue, with eigenvector n. Equation �10� shows
that biaxiality arises naturally whenever the other two eigen-
values of S are different. Then, Eq. �11� shows that such
eventuality is closely related to the vector curl n and the
eigenvalues entering in the decomposition �8� of the director
gradient.

In Sec. IV we have applied the considerations above to
some model cases. As it could be easily predicted the pure
splay, bend, and twist fields, being all planar, exhibit some
degree of biaxiality which privileges the director plane over
the orthogonal direction. A less trivial result is that there are
spatially varying director configurations that do not induce
biaxiality at all. Cladis-Kléman’s escape in the third dimen-
sion yields a unexpected example of this phenomenon. Sec-
tion V analyzes the onset of surface biaxiality both in the
case of homeotropic and planar alignment. In the former
case, biaxiality is ruled by the difference between the princi-
pal curvatures along the surface. In the latter, only one cur-
vature counts, and more precisely the one along the pre-
scribed direction in the tangent plane.

To conclude our analysis we want to give a numerical
estimate of the magnitude of the biaxiality phenomena we
are predicting. In all nontrivial cases, the free-energy density
will contain a O��� term, which triggers the biaxiality onset.
To obtain a rough estimate, we can neglect the O��4� term in
�LdG, and the O��2� term in �el, both with respect to the
dominant O��2� term, appearing in �LdG. When this is the
case, the �local� preferred value of � may be obtained by
minimizing the function

g��� =
2

9
�6Cs2 + 9Bs + 9A��2 − 2Ks���+ − �−�

� 2�2 + ��Cs0
2�2 − 2Ks0���+ − �−�

=
2Ks0


n
2 ��2 − 
n

2��+ − �−��� , �25�

where we have replaced s�s0 and introduced the nematic
coherence length


n
2 =

K

Cs0�2 + ��
. �26�

The �local� optimal value of the degree of biaxiality is then

�opt � 1
2
n

2��+ − �−� . �27�

Though �opt may vary from point to point, we have to keep
in mind that in general the equilibrium configuration will not
coincide with �opt because of the 	��	2 term, and the bound-
ary conditions. To make an explicit example, let us consider
a nematic cylindric capillary of radius R, with homeotropic
conditions enforced at the surface. Then, the difference be-
tween the eigenvalues of S at the surface is R−2 and the
surface biaxiality is of the order of �
n /R�2. Since the nem-
atic coherence length hardly exceeds the tenths of a �m, we

obtain �opt�10−2 for a �m capillary. The scenario changes
completely close to a nematic defect, where at least one of
the eigenvalues of S diverges. Both the pure splay and the
pure bend examples above yield ��+−�−�=r−2, which im-
plies �opt��
n /r�2. The biaxiality cloud cannot be neglected
if we come too close to the defect.

APPENDIX A: DIRECTOR GRADIENT

In order to characterize the tensor �n we begin by notic-
ing that

��n�Tn =
1

2
� �n · n� = 0 , �A1�

since n is a unit vector. Let sym L= 1
2 �L+LT� and skw L

= 1
2 �L−LT� respectively denote the symmetric and the skew

part of a tensor L. Thus,

��n�n = �sym � n + skw � n�n =
1

2
��n�n +

1

2
curl n Ù n ,

�A2�

and ��n�n=curl nÙn. Let G=�n− ��n�n � n. For any vec-
tor v,

�skw G�v = �skw��n� − 1
2 ���n�n � n − n � ��n�n��v

= 1
2 �curl n − n Ù �curl n Ù n�� Ù v

= 1
2 �n · curl n�n Ù v = 1

2 �n · curl n�W�n�v ,

�A3�

where W�n� denotes the skew tensor associated with n, that
is the tensor such that W�n�v=nÙv for any v. Thus,

�n = sym G + 1
2 �n · curl n�W�n� + �curl n Ù n� � n

= �2e2 � e2 + �3e3 � e3 + 1
2 �n · curl n�W�n�

+ �curl n Ù n� � n , �A4�

where 
�2 ,�3� and 
e2 ,e3� are, respectively, the eigenvalues
and eigenvectors of sym G. The eigenvectors 
e2 ,e3� are
orthogonal to n, since �A3� implies

�sym G�n = Gn − �skw G�n

= ��n − ��n�n � n�n −
1

2
�n · curl n�W�n�n = 0 .

�A5�

Let us consider the symmetric tensor S= ��n���n�T. In view
of the crucial role it plays in inducing biaxiality we now
analyze it in more detail:

S = ��2e2 � e2 + �3e3 � e3 + 1
2 �n · curl n�W�n�

+ �curl n Ù n� � n���2e2 � e2 + �3e3 � e3

− 1
2 �n · curl n�W�n� + n � �curl n Ù n��

= �2
2e2 � e2 + ��2 − �3��n · curl n�sym�e2 � e3� + �3

2e3 � e3

+ 1
4 �n · curl n�2�I − n � n� + �curl n Ù n� � �curl n Ù n� .

�A6�

BULK AND SURFACE BIAXIALITY IN NEMATIC ¼ PHYSICAL REVIEW E 74, 031708 �2006�

031708-5



Let 
0,�+ ,�−� be the eigenvalues of S. The onset of biaxi-
ality depends whether the latter two are equal or not. Let
curl n=cnn+c2e2+c3e3. From �A6� we obtain

��+ − �−�2 = �c2
2 − c3

2 + �3
2 − �2

2�2 + 4�c2c3 + 1
2cn��3 − �2��2.

�A7�

We finally remind that, given two vectors u ,v, the tensor
product �u � v� is defined as the second-order tensor such
that

�u � v�a = �v · a�u for any vector a . �A8�

APPENDIX B: ORDER TENSOR GRADIENT

Let us differentiate Eq. �2�. We obtain

�Q = �n � n − 1
3I� � �s + s��n�n + n � �n�

+ �e+ � e+ − e− � e−� � ��

+ ���e+�e+ + e+ � �e+ − �e−�e− − e− � �e−� ,

�B1�

where, given a second-order tensor L and a vector u, �L�u�
is defined as the third-order tensor such that

�L�u�a = La � u for any vector a . �B2�

When computing the square norm of �Q, we can make ex-
tensive use of the property �A1� and also take into account
that

u · v = 0 Þ ��u�Tv = − ��v�Tu . �B3�

As a consequence, we obtain

	�Q	2 = 2
3 	�s	2 + 2	��	2 + 2s2	�n	2

+ 2�2�	�e+	2 + 	�e−	2 + 2	��e+�Te−	2�

− 4s��	��n�Te+	2 − 	��n�Te−	2� . �B4�

We can further simplify expression �B4� if we consider that

	�e+	2 + 	�e−	2 = 	��e+�T	2 + 	��e−�T	2

= 	��e+�Tn	2 + 	��e+�Te−	2 + 	��e−�Tn	2

+ 	��e−�Te+	2

= 	�n	2 + 2	��e+�Te−	2 �B5�

and that

	��n�Tu	2 = ��n�Tu · ��n�Tu = u · Su , �B6�

provided we define S= ��n���n�T. By using �B5� and �B6� it
is immediate to give �B4� the expression quoted in �10�.

APPENDIX C: CURVATURE TENSOR

Let � be the smooth surface, which bounds the system we
are interested in. Let � be the unit normal, everywhere point-
ing in the direction of the bulk. We parametrize points in the
bulk through a coordinate set �u ,v ,
� such that

P�u,v,
� = P��u,v� + 
��u,v� , �C1�

where P� is the projection of P onto �, and 
 is the distance
of P from the same surface. Such a coordinate set is well
defined in a finite neighborhood of �.

Let us consider the vector field everywhere defined as
�(P�u ,v ,
�)=�(P��u ,v�). The second-order tensor �� is
symmetric. It generalizes the curvature tensor ���, which is
defined only on the tangent bundle of �. The eigenvectors of
�� coincide with those of the curvature tensor, and are thus
the unit normal �with a null eigenvalue� and the �tangent�
principal directions on �. If we introduce 
�1 ,�2�, the prin-
cipal curvatures on �, and their corresponding eigenvectors

e1 ,e2�, we have

�� = −
�1

1 − �1

e1 � e1 −

�2

1 − �2

e2 � e2,

�e1 =
�1

1 − �1

� � e1 and � e2 =

�2

1 − �2

� � e2. �C2�
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